


Fig. 3. SAW losses in Ta_2O_5 films on YX quartz.

Fig. 2 is the loss curve measured for a 0.42- μm film. Data taken in the unlayered portion are deflected at an angle ϕ , but in the film the deflection angle ϕ' is larger due to a slower velocity as indicated in Fig. 1. The data in Fig. 2 are presented on a semilog plot, and are linear in regions where the probe beam does not overlap in the two areas. Points falling off the curve indicate an overlap region where the probe beam hits both layered and unlayered regions and the beam is deflected into two separate angles. Each IDT is used to launch the SAW and the losses measured to be the same within the experimental accuracy. From Fig. 2, the loss for this particular film thickness is determined to be 2.9 dB/cm in the linear region; using this loss value and a 5.7-mm film width underestimates the total loss in this sample by approximately 1.0 dB. The additional loss could be due to edge imperfections or step discontinuities at the film edge; losses attributed to the edge are never found to be larger than 1.0 dB in these films. In most of the samples measured, the diffraction efficiency increases in the film as shown in Fig. 2; the maximum increase observed is 4.6 and is found in a sample with a 1.67- μm thickness. The increase is due to additional constructive reflections at the film-substrate interface, and a longer interaction length between the optical wave and the SAW. The diffraction efficiency also appears to decrease by a larger amount leaving the film than it increases entering the film. Again, this could be attributed to the step discontinuity but it is interesting to note that the effect is opposite to that observed in a film where the SAW speeds up in the film [9]. Losses for three other thicknesses were measured and the data are shown in Fig. 3 as a function of film thickness. Finally, acoustic wave loss values for polycrystalline Ta_2O_5 have not been measured, but the data presented here indicate that they are greater than 340 dB/cm/GHz² assuming that the quantity for the thickest film is approaching the bulk loss value.

ACKNOWLEDGMENT

The authors wish to acknowledge the help of E. J. West for the preparation of the thin films used in these measurements and the Rockwell International Corporation Electronics Research Division, for fabricating the IDT's.

REFERENCES

- [1] L. P. Solie, "Piezoelectric waves on layered substrates," *J. Appl. Phys.*, vol. 44, pp. 619-627, Feb. 1973.
- [2] K. Dransfeld and E. Salzmann, "Excitation, detection, and attenuation of high frequency elastic surface waves," in *Physical Acoustics*, vol. VII, W. P. Mason and R. N. Thurston, Ed. New York: Academic, pp. 219-272.
- [3] M. Munasinghe and G. W. Farnell, "Rayleigh wave scattering in layered media," presented at the 1973 IEEE Symp. Ultrasonics, Monterey, Calif., Paper I12.
- [4] T. M. Keeder, G. S. Kino, and P. L. Adams, "Enhancement of piezoelectric surface-wave coupling by thin-film perturbation," *Appl. Phys. Lett.*, vol. 19, pp. 279-280, Oct. 1971.
- [5] E. G. Lean and C. G. Powell, "Dispersive acoustical deflector for electromagnetic waves," U.S. Patent 3 736 004, May 29, 1973.
- [6] L. Kuhn, M. L. Dakss, P. F. Heidrich, and B. A. Scott, "Deflection of an optical guided wave by a surface acoustic wave," *Appl. Phys. Lett.*, vol. 17, pp. 265-267, Sept. 1970.

- [7] D. H. Hensler, J. D. Cuthbert, R. J. Martin, and P. K. Tien, "Optical propagation in sheet and pattern generated films of Ta_2O_5 ," *Appl. Opt.*, vol. 10, pp. 1037-1042, May 1971.
- [8] D. A. Wille and M. C. Hamilton, "Acousto-optic deflection in Ta_2O_5 waveguides," *Appl. Phys. Lett.*, vol. 24, pp. 156-160, Feb. 1974.
- [9] J. F. Weller and T. G. Giallorenzi, "Optical detection of acoustic surface waves in layered substrates: Theory and experiment," *IEEE Trans. Sonics Ultrason.*, to be published.
- [10] E. G. H. Lean and C. G. Powell, "Optical probing of surface acoustic waves," *Proc. IEEE*, vol. 58, pp. 1939-1947, Dec. 1970.

Comments on "Scattering by a Ferrimagnetic Circular Cylinder in a Rectangular Waveguide"

PRAKASH BHARTIA

In the above paper,¹ the authors have arrived at a general and rigorous solution for the scattering by a demagnetized ferrimagnetic cylinder in a rectangular waveguide. Corrections to the above paper have appeared separately [1], and a proof has been presented to show that the unitary condition on the S matrix is guaranteed for any size of truncation in the formulation of that paper. However, a number of errors still remain and for completeness, they are pointed out here. Thus (7)¹ should read

$$\frac{\partial E^i}{\partial r} + \frac{\partial E^s}{\partial r} = M \frac{\partial E'}{\partial r} - jK \frac{1}{r} \frac{\partial E'}{\partial \theta}, \quad \text{at } r = R.$$

The second part of (30)¹ should read

$$vJ_p'(v) \sin\left(\frac{\pi x_0}{a} + p\alpha\right) + vJ_p'(v) \sum_{n=-\infty}^{\infty} A_n h_{np} + A_p v H_p^{(2)}(v) = B_p D_p J_p(u).$$

Finally, (33)¹ should read

$$A_p = G_p \sin\left(\frac{\pi x_0}{a} + p\alpha\right) + G_p \sum_{n=-N}^N A_n h_{np}.$$

REFERENCES

- [1] N. Okamoto and Y. Nakanishi, "Correction to 'Scattering by a ferrimagnetic circular cylinder in a rectangular waveguide,'" *IEEE Trans. Microwave Theory Tech. (Short Papers)*, vol. MTT-20, pp. 782-783, Nov. 1972.

Manuscript received May 23, 1974.
The author is with the Faculty of Engineering, University of Saskatchewan, Regina, Sask., Canada.
¹ N. Okamoto, I. Nishioka, and Y. Nakanishi, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, pp. 521-527, June 1971.